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This contribution describes an analysis method for the class of problems in which data elements — e.g. mea-
surements, event detections, etc. — are distributed over some region of space and/or time, or other coordinates
(e.g., energy, redshift, category), with the goal of estimating the variation of some physical quantity. The non-
parametric model is simply that the physical variable is constant over a finite set of segments of the data space.
A dynamic programming algorithm implements such modeling of 1D data by yielding the optimal partition
of an interval. Any fitness function that is additive on the partition elements can be used, but the Bayesian
posterior probability distribution over partitions—marginalized over all but the geometrical parameters defining
the partition—has proved particularly effective. The resulting mazimum a posteriori piecewise constant model

is readily extended to data spaces of higher dimension.

1. Signal and Density Estimation

A goal of most astronomical observations and par-
ticle physics experiments is to describe the variation
of some physical quantity as a function of time, space,
energy, or other independent variable. We call such a
function a signal. The experimental procedure is to
measure the quantity at a finite number of points in
the corresponding data space. This paper outlines a
way to characterize signal variability using a simple
nonparametric model of such data.

Related work on cluster detection in point data in
the form of 2D catalogs can be found in [5, 8, 11].
These authors use the distribution of areas of Voronoi
cells to establish a threshold of cell density below
which lies background and above which are over den-
sities, or clusters.

In subsequent sections we discuss the data (defining
the key concept of data cells), segmented models and
the corresponding fitness functions, the prior distri-
bution for the number of blocks, the algorithm imple-
menting the optimization, and finally application of
the method to the large scale distribution of galaxies.

2. Data Cells

The data may be in any of a number of forms, such
as points (e.g. galaxy positions), counts (e.g. particle
events), measurements (e.g. spectral energy density),
ete, as long as the measurement errors are indepen-
dent. The current formalism cannot deal with depen-
dent errors nor deconvolve the effects of dispersion—
e.g., the point spread function affecting GLAST pho-
ton data.

The data points are to be associated with data
cells. A simple example of a data cell is a bin—
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commonly used to estimate the density of points on
some measurement axis. The complete description of
the cell corresponding to a given bin requires spec-
ification of the number of samples in the bin, plus
the bin’s boundaries. More generally a data cell is
a data structure representing an individual measure-
ment within the data space—the set of all values that
the measured quantity can possibly take on. For our
segmented models, the cells must contain whatever
information is needed to compute the model fitness
function (§4).

In most cases it is natural to define the data cells to
be in one-to-one correspondence to the measurements.
But in a specific application it may be preferable to do
otherwise—for example, if two or more events have the
same time-tag, it may be reasonable to assign them
to the same data cell. Similarly, in most cases it will
be natural that the data cells partition the entire data
space, with no overlap or gaps between cells; and typ-
ically the data cells contain information on adjacency
to other cells. But in specific applications any of these
conditions may be violated.

3. Piecewise Constant Models

We consider only segmented, piecewise constant
models. That is to say the data space, whatever its
dimension, is partitioned into a finite number of blocks
within which the measured variable is represented as
constant. The complete model consists of the parti-
tion, specified by the number of blocks Ny, a list of
data cells in each blocks, plus the corresponding levels
(e.g. event rates) in the blocks.

Boundaries separating blocks can be arbitrary: in
1D, points anywhere in the interval; in 2D, arbitrary
line segments; in dimension v, arbitrary surfaces of
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dimension v — 1. Optimization over all possible par-
titions then involves hugely infinite search spaces.

However, a simple restriction on the class of allowed
boundaries yields finite search spaces that are good
approximations to the true ones, and turns the prob-
lem into a comparatively simple combinatorial opti-
mization. The underlying idea is that two partitions
differing only in a small distortion of a block boundary
are not significantly different from each other. Con-
struct a bounded volume element around each of the
N data points, say consisting of that part of the data
space closer to the point than to any other. In only
a slight abuse of terminology, we associate these vol-
umes with the data cells discussed above. Further,
blocks are defined as sets of these cells. Correspond-
ingly a partition of the whole data space is defined
by collecting the N cells into distinct blocks. The set
of all possible such assignments is finite, but repre-
sents an approximation to the hugely infinite set of
all possible partitions.

If the cells are defined as above, they form what is
called the Voronoi tessellation, a geometric partition
easily computed in spaces of any dimension [10]. The
partition elements, here called blocks, are simply sets
of cells, with the condition that each cells belongs to
one block, and not more than one. There are two im-
portant cases: the cells in a block must all be adjacent
to each other, or one may not insist on this condition.
Think of the blocks as analogous to level surfaces for
an unknown function; the two cases correspond to dis-
tinguishing or identifying the disconnected parts of a
given level surface.

Such step functions comprise the simplest class of
nonparametric models, are very easy to interpret, and
allow easy computation of summary physical quanti-
ties. In visualizations the choppiness due to disconti-
nuities in the block representation can be ameliorated,
e.g. by smoothing, if desired.

We want the model to be sensitive to any and
all true variations, but insensitive to apparent varia-
tions produced by the inevitable observational errors.!
We would like to preserve all features in the signal,
on all scales supported by the data. But of course
all analysis schemes—even those using nonparametric
models—involve choices which restrict the questions
that can be addressed. Our approach favors local
structures over global ones. Because we want to be
sensitive to features on fine as well as coarse scales,
we do not use smoothing for noise suppression, but
rather rely on the accuracy of the statistical model of
the observational noise to effect denoising without

LOf course we sharply distinguish between noise in the sense
of random variations inherent in the source and random obser-
vational errors.
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smoothing.? A subsidiary goal is to implement an
objective procedure suitable for automatic analysis of
large data sets (data mining) such as those generated
by modern particle physics and astrophysics projects.

The setting just described is more general that it
perhaps first appears, and the methodology given here
applies to a variety of seemingly different problems,
and with a variety of distinct data types. The former
include detection of signals and upper limits thereof,
density estimation (usually for point data), detection
and characterization of clusters, unsupervised classifi-
cation, and others — including multivariate versions of
any of these problems. Essentially any data mode can
be treated, as long as one can compute a suitable fit-
ness function for the block model. Fitness functions
for point, binned count, and measurement data are
readily computed, and categorical data can certainly
be dealt with too. Distortions such as data gaps, vari-
able instrumental sensitivity, and (at least in 1D) con-
volution with an instrumental point-spread function,
can also be treated in very natural ways. Perhaps
most useful of all is the ready treatment of data in
any dimension.

4. Fitness Functions: Posterior
Probabilities

A key element in implementing the modeling pro-
cedure is a function to measure goodness-of-fit for
partitions. The standard Bayesian model estimation
method yields convenient expressions valid for a vari-
ety of data modes. The simplicity of the block model
makes such computations very easy. In particular, we
need only compute the posterior for a single block,
since statistical independence of the observational er-
rors insures that the posterior for the whole data space
is the product of that for each of the partition ele-
ments. Indeed, our algorithm requires additivity: the
fitness of a partition must be the sum of the fitnesses
of its blocks. This condition is achieved by using log-
arithms of posteriors.

Here is an outline of the procedure. The full pos-
terior probability for the piecewise constant model
depends on the block edges and signal level for all
blocks. Treating the levels as nuisance parameters,
and marginalizing them, reduces the full problem
into a much more tractable combinatorial optimiza-
tion task—in a nutshell, finding the optimal number
of blocks and their edges.

The posterior probability of model M, given data
D, is P(M, ¢,6|D), where the model parameters have

2We adopt the slogan: the Statistically Significant Structure,
the whole Statistically Significant Structure, and nothing but
the Statistically Significant Structure.
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been divided into two types: nuisance parameters, de-
noted by #, and the others, denoted ¢. Marginaliza-
tion of the nuisance parameters is effected simply by
carrying out the integral

HMwmz/meﬂmw. (1)
Bayes’ theorem allows this to be written

P(M,|N,V) M/P(N7V|M7¢,9)P(M,¢,9)d9,
(2)

where we have replaced D with the two relevant pa-
rameters (N and V', defined below) and eliminated the
factor P(D), irrelevant for model comparison since it
is independent of the model. We choose the parame-
ters ¢ to be those specifying the edges of the model
segments, leaving all others to be treated as nuisance
parameters—the most important of which is the pa-
rameter representing the constant value of the signal
in the block under consideration.

A useful example is the case where the data com-
prise events, or counts of events, at various locations
in the data space, modeled as Bernoulli or Poisson
point processes. Marginalizing the event rate param-
eter characteristically yields a posterior that depends
on two sufficient statistics: N, the number of events
in the block, and V, the size of the block. For event
data the posterior of the block model (abbreviated B),
marginalized and conditional on the data, is

T(N+1)I(V - N+1)
T(V +2)

P(BIN,V) = 3)
This quantity can be thought of as the weight® which
the data gives to model B. The product over the
blocks making up a partition gives its weight relative
to other partitions. For binned data

T(N +1)
W

The reader is referred to [13] for the details of this
computation, including a discussion of the prior distri-
bution for the signal strength and the units in which
V needs to be expressed, and details of the fitness
functions for several data modes. Applications are
discussed in [14-16].

Nothing in the derivation of the above fitness func-
tions depends on the dimensionality of the data space.
For event data in a space of dimension v, e.g., all that
matters is that the expected number of events in an
elementary v-dimensional volume element is equal to
a constant (the Poisson rate) times the volume. Hence
Egs. (3) and (4) are valid in any dimension.

P(BIN,V) = ()

3The ratio of such weights for two models, called the Bayes
factor, gives the models’ relative probabilities.
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5. Prior on the Number of Blocks

One parameter not marginalized, namely the num-
ber of blocks, N, has a special status, since its value
determines the number of other parameters in the
complete model. That the value of N, is automatically
found in the optimization is one of the advantages of
the dynamic programming algorithm over most clus-
ter analysis methods, in which finding the number of
clusters is a vexing problem. One approach is to intro-
duce a term in the fitness function that applies a larger
penalty to more complex models. There are various
justifications for particular forms of such a penalty
term, e.g. based on the Minimum Description Length
principle [12]. In the Bayesian formalism, there is no
need to introduce a penalty term ad hoc, since the
marginalization of the nuisance parameters yields a
built-in effective complexity penalty—sometimes de-
scribed as the Occam factor. But we do need to pre-
scribe a prior distribution for this parameter.

We have adopted a geometric distribution for this
prior:

P(ny) = Cy™™ ()

(for ny > 0) advocated in [2]. This form yields the
following contribution to the log-posterior (ignoring
an overall constant):

log[P(ny)] = —ny log(7) - (6)

Note that Eq.(6), since it corresponds to subtracting
the constant log(«y) from the fitness function for each
block, trivially maintains block additivity of the fit-
ness function. We are investigating how the strategy
of the algorithm might be modified to allow the use
of other functional forms for this prior.

6. The Optimization Algorithm

The next step is to optimize the model by maximiz-
ing a measure of its goodness of fit over all possible
partitions. In [7] we presented a way to find the global
optimum of any block-additive fitness function, over
all 2V possible partitions of a 1D interval containing
N data points, in time O(N?2). This section is a brief
description of this inductive 1D algorithm and its ex-
tension to higher dimensions.

Suppose we have the optimal partition of the first
n data points, and the corresponding optimal fitness
value. Now add one data point, and seek the optimal
partition of the first n+1 points. Let j be an arbitrary
index between 1 and n + 1, and consider the partition
consisting of two parts: (a) the optimal partition of
the the first j — 1 data points, followed by (b) a single
block from j to n + 1. Part (a) and its fitness were
found and saved earlier, at iteration number j — 1,
and the fitness of (b) is easily computed. A simple
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argument shows that the optimal partition for n + 1
data cells corresponds to the value of j that maximizes
the combined fitness of (a) and (b).

This algorithm can be extended to a data space
of any dimension. We continue to take partitions to
be sets of blocks containing data cells (e.g. Voronoi
cells defined by the data points), but relax the con-
straint that blocks be simply connected.* If an opti-
mal block turns out to be not simply connected, it is
straightforward to identify its simply connected parts.
Relaxing the connectedness constraint has the effect
that a few isolated data cells may be assigned to the
wrong block. For example a data point with unusually
close (far) nearest neighbors, due to a rare statistical
fluctuation, may be assigned to a higher (lower) den-
sity block than the one that it actually belongs to.
Clearly the locations of the data cells are now irrele-
vant to the optimization. This permits us to arrange
the cells in a 1D array so that the algorithm described
above can be used. Ordering by cell density—p(c) is
the number of events in cell ¢ (usually 1) divided by
the volume of c—is reasonable, because the piecewise
constant model obviously tries to collect together cells
with similar densities. This idea is made rigorous by
the intermediate density property: given three cells
c1,¢2,¢3 ordered by density, p(c1) < p(c2) < p(cs), if
both ¢; and ¢3 are in block By, an element of an opti-
mal partition, then ¢z is also in By. We have proven
that this result follows from a certain convexity prop-
erty possessed by many fitness functions.

7. An Example and Other Work

We have applied this methodology to a variety of
density estimation problems in 1D (mainly time se-
ries and the construction of adaptive histograms), 2D
(e.g., data from sky surveys), 3D (e.g. data from
redshift surveys) and higher dimensions. Space does
not permit more than brief mention of one example.
Figure 1 shows the Bayesian block analysis of a data
set consisting of three dimensional rectangular coor-
dinates of the galaxies with measured redshifts in the
first data release from the Sloan Digital Sky Survey.
These data are confined to a relatively narrow range
of declination, and thus represent a fairly thin slice,
here shown in a view perpendicular to the slice. We
are developing visualization methods for this block
representation, to provide an intuitive picture of the
galaxy distribution, free of assumptions about the ex-

4A set A is simply connected if for any partition into two
subsets, A1 and Ay (A1 U A2 = A; A1 N Ay = (), at least one
cell in A; is adjacent to at least one cell in Ay. For Voronoi
cells either of two notions of adjacency can be used: sharing at
least one vertex, or sharing at least one face.
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Figure 1: 3D Bayesian Block representation of a section
of data from the Sloan Digital Sky Survey. A relatively
high density threshold has been set,” revealing the
skeleton of the distribution.

Figure 2: As in Figure 1, but with a lower density
threshold, revealing the degree to which these large scale
structures are interconnected.

istence of “clusters” with various symmetry proper-
ties. Also, directly from the block representation or
by transforming it, one can compute a large variety
of derivative statistical quantities describing the 3D
galaxy distribution and its topology—correlation and
clustering statistics, biasing, genus and genus-related
statistics, Minkowski functionals, etc. ([3, 4])

An early version of Bayesian Blocks, based on
the greedy algorithm, is in the Astrophysics Source
Code Library at http://ascl.net/block.html
Michael Nowak has developed S code implement-
ing Bayesian blocks in 1D for the S-lang/ISIS
Timing Analysis Routines (SITAR) home page
http://space.mit.edu/CXC/analysis/SITAR/ for
the Chandra Science Center at MIT. A number of
observers have used this approach to study time
series data [1, 6, 9, 17, 18].
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